Sand

Close-up of sand from a beach in Vancouver, showing a surface area of (approximately) between 1-2 square centimetres.
Heavy minerals (dark) in a quartz beach sand (Chennai, India).

Sand is a naturally occurring granular material composed of finely divided rock and mineral particles. The composition of sand is highly variable, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and non-tropical coastal settings is silica (silicon dioxide, or SiO2), usually in the form of quartz.

As the term is used by geologists, sand particles range in diameter from 0.0625mm (or 1⁄16 mm, or 62.5 micrometers) to 2 millimeters. An individual particle in this range size is termed a sand grain. The next larger size class above sand is gravel, with particles ranging from 2 mm up to 64 mm (see particle size for standards in use). The next smaller size class in geology is silt: particles smaller than 0.0625 mm down to 0.004 mm in diameter. The size specification between sand and gravel has remained constant for more than a century, but particle diameters as small as 0.02 mm were considered sand under the Albert Atterberg standard in use during the early 20th century. A 1953 engineering standard published by the American Association of State Highway and Transportation Officials set the minimum sand size at 0.074 mm. A 1938 specification of the United States Department of Agriculture was 0.05 mm.[1] Sand feels gritty when rubbed between the fingers (silt, by comparison, feels like flour).

ISO 14688 grades sands as fine, medium and coarse with ranges 0.063 mm to 0.2 mm to 0.63 mm to 2.0 mm. In the United States, sand is commonly divided into five sub-categories based on size: very fine sand (1⁄16 -  mm diameter), fine sand ( mm - ¼ mm), medium sand (¼ mm - ½ mm), coarse sand (½ mm - 1 mm), and very coarse sand (1 mm - 2 mm). These sizes are based on the Krumbein phi scale, where size in Φ = -log base 2 of size in mm. On this scale, for sand the value of Φ varies from -1 to +4, with the divisions between sub-categories at whole numbers.

Contents

Constituents

Sand from Pismo Beach, California. Components are primarily quartz, chert, igneous rock and shell fragments. Scale bar is 1.0 mm.
Close up of black volcanic sand from Perissa, in Santorini, Greece

The most common constituent of sand, in inland continental settings and non-tropical coastal settings, is silica (silicon dioxide, or SiO2), usually in the form of quartz, which, because of its chemical inertness and considerable hardness, is the most common mineral resistant to weathering.

Correlative analysis of Icelandic volcanic beach sand from Reynisfjara beach, using a Stereo Microscope and an Scanning Electron Microscope with EDS detection system for element analysis.

The composition of sand is highly variable, depending on the local rock sources and conditions. The bright white sands found in tropical and subtropical coastal settings are eroded limestone and may contain coral and shell fragments in addition to other organic or organically derived fragmental material.[2] The gypsum sand dunes of the White Sands National Monument in New Mexico are famous for their bright, white color. Arkose is a sand or sandstone with considerable feldspar content, derived from the weathering and erosion of a (usually nearby) granitic rock outcrop. Some sands contain magnetite, chlorite, glauconite or gypsum. Sands rich in magnetite are dark to black in color, as are sands derived from volcanic basalts and obsidian. Chlorite-glauconite bearing sands are typically green in color, as are sands derived from basaltic (lava) with a high olivine content. Many sands, especially those found extensively in Southern Europe, have iron impurities within the quartz crystals of the sand, giving a deep yellow color. Sand deposits in some areas contain garnets and other resistant minerals, including some small gemstones.

Environments

Sand from Coral Pink Sand Dunes State Park, Utah. These are grains of quartz with a hematite coating providing the orange color. Scale bar is 1.0 mm.

Sand is transported by wind and water and deposited in the form of beaches, dunes, sand spits, sand bars and related features. In environments such as gravel-bed rivers and glacial moraines it often occurs as one of the many grain sizes that are represented. Sand-bed rivers, such as the Platte River in Nebraska, USA, have sandy beds largely because there is no larger source material that they can transport. Dunes, on the other hand, are sandy because larger material is generally immobile in wind, and are a distinctive geographical feature of desert environments.

Study

An electron micrograph showing grains of sand
Photomicrograph of a volcanic sand grain; upper picture is plane-polarized light, bottom picture is cross-polarized light, scale box at left-center is 0.25 millimeter.

The study of individual grains can reveal much historical information as to the origin and kind of transport of the grain. Quartz sand that is recently weathered from granite or gneiss quartz crystals will be angular. It is called grus in geology or sharp sand in the building trade where it is preferred for concrete, and in gardening where it is used as a soil amendment to loosen clay soils. Sand that is transported long distances by water or wind will be rounded, with characteristic abrasion patterns on the grain surface. Desert sand is typically rounded.

People who collect sand as a hobby are known as arenophiles. Organisms that thrive in sandy environments are psammophiles.

Uses

At 300 km/h, an ICE 3 (DB class 403) releases sand from several bogies to the rails.
Sand sorting tower at a gravel extraction pit.

Hazards

A stingray about to bury itself in sand

While sand is generally non-toxic, sand-using activities such as sandblasting require precautions. Bags of silica sand used for sandblasting now carry labels warning the user to wear respiratory protection to avoid breathing the resulting fine silica dust. Material safety data sheets (MSDS) for silica sand state that "excessive inhalation of crystalline silica is a serious health concern".[4]

In areas of high pore water pressure sand and salt water can form quicksand, which is a colloid hydrogel that behaves like a liquid. Quicksand produces a considerable barrier to escape for creatures caught within, who often die from exposure (not from submersion) as a result.

Environmental Issues

Sand's many uses require a significant dredging industry, raising environmental concerns over fish depletion, landslides, and flooding. Countries such as China, Indonesia, Malaysia and Cambodia ban sand exports, citing these issues as a major factor.[5]

See also

References

  1. Urquhart, Leonard Church, "Civil Engineering Handbook" McGraw-Hill Book Company (1959) p.8-2
  2. Seaweed also plays a role in the formation of sand
  3. Importing Sand, Glass May Help Restore Beaches : NPR
  4. Simplot
  5. "The hourglass effect". October 8, 2009. http://www.economist.com/world/asia/displaystory.cfm?story_id=14588255. Retrieved October 14, 2009. 

External links